Liquid crystal on Silicon (LCOS) spatial phase modulators offer enhanced possibilities for adaptive optics applications in terms of response velocity and fidelity. Unlike deformable mirrors, they present a capability for reproducing discontinuous phase profiles. This ability also allows an increase in the effective stroke of the device by means of phase wrapping. The latter is only limited by the diffraction related effects that become noticeable as the number of phase cycles increase. In this work we estimated the ranges of generation of the Zernike polynomials as a means for characterizing the performance of the device. Sets of images systematically degraded with the different Zernike polynomials generated using a LCOS phase modulator have been recorded and compared with their theoretical digital counterparts. For each Zernike mode, we have found that image degradation reaches a limit for a certain coefficient value; further increase in the aberration amount has no additional effect in image quality. This behavior is attributed to the intensification of the 0-order diffraction. These results have allowed determining the usable limits of the phase modulator virtually free from diffraction artifacts. The results are particularly important for visual simulation and ophthalmic testing applications, although they are equally interesting for any adaptive optics application with liquid crystal based devices.
Search
Categories
Archives
- October 2024 (5)
- July 2024 (8)
- June 2024 (1)
- October 2023 (2)
- July 2023 (5)
- June 2023 (1)
- July 2022 (10)
- July 2021 (5)
- March 2021 (2)
- October 2020 (36)
- September 2020 (122)
- August 2020 (10)
- July 2020 (38)
- April 2020 (1)
- April 2018 (1)
- September 2017 (2)
Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator
- Voptica
- VAO Publications
Journal:
Optics Express
Year:
2009
Link:
Authors:
Enrique Josua Fernández; Pedro M. Prieto; Pablo Artal