Two-dimensional peripheral refraction and retinal image quality in orthokeratology lens wearers

Journal:
Biomedical Optics Express
Year:
2020
Link:
Authors:
Zhenghua Lin; Raul Duarte-Toledo; Silvestre Manzanera; Weizhong Lan; Pablo Artal; Zhikuang Yang;

Orthokeratology (O-K) is a common procedure that uses rigid contact lenses to reshape the cornea while worn overnight. Beyond the correction of refractive error, it has been suggested that this approach can also be used to reduce myopia progression, possibly because it induces changes in peripheral optics. As this hypothesis remains unproven, the aim of the present study was to explore changes in peripheral retinal optical quality in a group of myopic children following O-K treatment. We provide a comprehensive description of optical characteristics in a group of myopes before and after achieving stable corneal reshaping using overnight O-K lenses. These characteristics extended across the central visual field (60° horizontal x 36° vertical) as measured with a custom Hartmman-Shack wavefront sensor. After corneal reshaping, peripheral refraction was found to be asymmetrically distributed, with a myopic relative refraction of approximately 3D in the temporal retina. Astigmatism and higher order aberrations also increased in the temporal side. Based on corneal topography following treatment, subjects were divided into two groups: Centred Treatment (CT, decentration 2 [􀀀0.5 + 0.5] mm) and Slightly Decentred Treatment (subjects with more decentred lenses). The process was also modelled by ray-tracing simulation. The results indicate that increased myopia in the temporal retina is caused by the decentration of lenses towards the temporal side. Peripheral optics differ significantly following O-K lens treatment, but further research is required to determine whether this is likely to affect myopia progression.