We have developed a prototype apparatus for real-time closed-loop measurement and correction of aberrations in the human eye. The apparatus uses infrared light to measure the wave-front aberration at 25 Hz with a Hartmann–Shack sensor. Defocus is removed by a motorized optometer, and higher-order aberrations are corrected by a membrane deformable mirror. The device was first tested with an artificial eye. Correction of static aberrations takes approximately five iterations, making the system capable of following aberration changes at 5 Hz. This capability allows one to track most of the aberration dynamics in the eye. Results in living eyes showed effective closed-loop correction of aberrations, with a residual uncorrected wave front of 0.1 mm for a 4.3-mm pupil diameter. Retinal images of a point source in different subjects with and without adaptive correction of aberrations were estimated in real time. The results demonstrate real-time closed-loop correction of aberration in the living eye. An application of this device is as electro-optic “spectacles” to improve vision.
Search
Categories
Archives
- December 2024 (1)
- October 2024 (5)
- July 2024 (8)
- June 2024 (1)
- October 2023 (2)
- July 2023 (5)
- June 2023 (1)
- July 2022 (10)
- July 2021 (5)
- March 2021 (2)
- October 2020 (36)
- September 2020 (122)
- August 2020 (10)
- July 2020 (38)
- April 2020 (1)
- April 2018 (1)
- September 2017 (2)
Closed-loop adaptive optics in the human eye
- Voptica
- VAO Publications
Journal:
Optics Letters
Year:
2001
Link:
Authors:
Enrique J. Fernández, Ignacio Iglesias, Pablo Artal