Purpose: To investigate binocular visual acuity and depth of focus when one eye forms images through a typical pupil diameter aperture (4 mm) and the other eye through a small pupil of 1.5-mm diameter.
Methods: Using a recently developed adaptive optics binocular visual simulator, through focus monocular and binocular visual acuity were measured in three subjects under specially simulated visual conditions: right eyes had “small aperture” vision through a 1.5-mm pupil diameter and left eyes had normal vision through 4-mm pupil diameter. The measurements were performed in photopic and mesopic conditions.
Results: An increase in binocular and monocular (for the smallaperture eye) depth of focus was measured with respect to the 4-mm pupil diameter eye. It ranged from 1 to 1.5 diopter (D) depending on the threshold requirement and the visibility conditions. For photopic conditions, the J2 visual acuity level was reached at 1 D of defocus for the 4-mm pupil diameter case, while for the 1.5-mm, the J2 level was reached at 2.5 D. Binocular summation occurred only in far vision conditions (no defocus added). For near vision, binocular visual acuity closely followed the values of monocular visual acuity for the eye with the smaller aperture.
Conclusions: The small-aperture effect to increase depth of focus in the human eye was successfully implemented in a binocular visual simulator. Although certain limitations exist, the smallaperture approach provided a simple but attractive solution to increase depth of focus in the human eye.
Buscar
Categorías
Archivos
- julio 2024 (8)
- junio 2024 (1)
- octubre 2023 (2)
- julio 2023 (5)
- junio 2023 (1)
- julio 2022 (10)
- julio 2021 (5)
- marzo 2021 (2)
- octubre 2020 (36)
- septiembre 2020 (122)
- agosto 2020 (10)
- julio 2020 (38)
- abril 2020 (1)
- abril 2018 (1)
- septiembre 2017 (2)
Binocular Visual Simulation of a Corneal Inlay to Increase Depth of Focus
- Voptica
- Publicaciones de VAO
Journal:
Investigative Ophthalmology & Visual Science
Year:
2011
Link:
Authors:
Juan Tabernero; Christina Schwarz; Enrique J. Fernández; Pablo Artal