A novel deformable mirror using 52 independent magnetic actuators (MIRAO 52, Imagine Eyes) is presented and characterized for ophthalmic applications. The capabilities of the device to reproduce different surfaces, in particular Zernike polynomials up to the fifth order, are investigated in detail. The study of the influence functions of the deformable mirror reveals a significant linear response with the applied voltage. The correcting device also presents a high fidelity in the generation of surfaces. The ranges of production of Zernike polynomials fully cover those typically found in the human eye, even for the cases of highly aberrated eyes. Data from keratoconic eyes are confronted with the obtained ranges, showing that the deformable mirror is able to compensate for these strong aberrations. Ocular aberration correction with polychromatic light, using a near Gaussian spectrum of 130 nm full width at half maximum centered at 800 nm, in five subjects is accomplished by simultaneously using the deformable mirror and an achromatizing lens, in order to compensate for the monochromatic and chromatic aberrations, respectively. Results from living eyes, including one exhibiting 4.66 D of myopia and a near pathologic cornea with notable high order aberrations, show a practically perfect aberration correction. Benefits and applications of simultaneous monochromatic and chromatic aberration correction are finally discussed in the context of retinal imaging and vision.
Buscar
Categorías
Archivos
- diciembre 2024 (2)
- octubre 2024 (5)
- julio 2024 (8)
- junio 2024 (1)
- octubre 2023 (2)
- julio 2023 (5)
- junio 2023 (1)
- julio 2022 (10)
- julio 2021 (5)
- marzo 2021 (2)
- octubre 2020 (36)
- septiembre 2020 (122)
- agosto 2020 (10)
- julio 2020 (38)
- abril 2020 (1)
- abril 2018 (1)
- septiembre 2017 (2)
Adaptive optics with a magnetic deformable mirror: applications in the human eye
- Voptica
- Publicaciones de VAO
Journal:
Optics Express
Year:
2006
Link:
Authors:
Enrique J. Fernández, Laurent Vabre, Boris Hermann, Angelika Unterhuber, Boris Považay, Wolfgang Drexler