Clinical Validation of the VAO Adaptive Optics Visual Simulator

Lucia Hervella; Eloy Villegas and Pablo Artal.

Abstract

Purpose (100 words): To validate in the clinic the Adaptive Optics Visual Simulator VAO (Voptica SL, Murcia, Spain) for fast and accurate refraction estimates.

Setting (50 words): Laboratory of Clinical Optics, University of Murcia, Spain.

Methods (100 words): VAO combines optical measurements and visual testing within the same compact instrument. It incorporates a Hartmann-Shack wave-front sensor to measure objective refraction and aberrations, together with a spatial light modulator capable of correcting or inducing any optical profile while performing visual testing. In seventy-four eyes of 37 subjects, subjective refraction (SR) was measured using VAO. The agreement of spherical equivalent (M) and cross cylinders (J0 and J45) with a standard refraction technique was estimated using different statistic parameters: 95% confidence limits (CL), Student’s t-test or Wilcoxon Rank Sum and Pearson correlation coefficient (r).

Results (100 words): There is a high correlation between the elements of SR (M, J0 and J45) measured with VAO and the standard technique (r ≥ 0.92) and the differences are not significant different (p>0.05). The 95% CL of M, J0 and J45 were ±0.38, ±0.07 and ±0.07 D respectively. The reproducibility of SR measurements between two examiners had an excellent correlation (r ≥ 0.93) and there were not significant differences between them (p>0.05). The 95% CL of M, J0 and J45 were ±0.29, ±0.08 and ±0.07 D respectively.

Conclusions (100 words):

Refraction results using the VAO adaptive optics visual simulator were in agreement with those obtained in a standard technique while offering significant advantages in terms of time and clinic space. VAO is a new instrument that offers significant advantages in the optical and visual assessment of cataract and refractive surgery patients.